Characterization of 11beta-hydroxysteroid dehydrogenase activity and corticosteroid receptor expression in human osteosarcoma cell lines.

نویسندگان

  • R Bland
  • C A Worker
  • B S Noble
  • L J Eyre
  • I J Bujalska
  • M C Sheppard
  • P M Stewart
  • M Hewison
چکیده

Studies in vitro and in vivo have shown that corticosteroids play an important role in bone physiology and pathophysiology. It is now established that corticosteroid hormone action is regulated, in part, at the pre-receptor level through the expression of isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), which are responsible for the interconversion of hormonally active cortisol to cortisone. In this report we demonstrate 11beta-HSD activity in human osteoblast (OB) cells. Osteosarcoma-derived OB cell lines TE-85, MG-63 and SaOS-2 and fibrosarcoma Hs913T cells express the type 2 isoform of 11beta-HSD, as determined by reverse transcription polymerase chain reaction (RT-PCR) and specific enzyme assays. Enzyme activity was shown to be strictly NAD dependent with a Km of approximately 71 nM; 11beta-HSD type 1 mRNA expression and enzyme activity were not detected. All four cell lines expressed mRNA for the glucocorticoid receptor (GR) and mineralocorticoid receptor, but specific binding was only detectable with radiolabelled dexamethasone (Kd=10 nM) and not aldosterone. MG-63 cells had two to three times more GR than the other OB cells, which correlated with the higher levels of 11beta-HSD 2 activity in these cells. In contrast to the osteosarcoma cell studies, RT-PCR analysis of primary cultures of human OB cells revealed the presence of mRNA for 11beta-HSD 1 as well as 11beta-HSD 2. However, enzyme activity in these cells remained predominantly oxidative, i.e. inactivation of cortisol to cortisone (147 pmol/h per mg protein at 500 nM cortisol) was greater than cortisone to cortisol (10.3 pmol/h per mg protein at 250 nM cortisone). Data from normal human OB and osteosarcoma cells demonstrate the presence of an endogenous mechanism for inactivation of glucocorticoids in OB cells. We postulate that expression of the type 1 and type 2 isoforms of 11beta-HSD in human bone plays an important role in normal bone homeostasis, and may be implicated in the pathogenesis of steroid-induced osteoporosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-specific Cushing's syndrome, 11beta-hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action.

Two isoforms of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) interconvert the active glucocorticoid, cortisol, and inactive cortisone. 11beta-HSD1 acts predominantly as an oxo-reductase in vivo using NADP(H) as a cofactor to generate cortisol. In contrast, 11beta-HSD2 is a NAD-dependent dehydrogenase inactivating cortisol to cortisone, thereby protecting the mineralocorticoid receptor from ...

متن کامل

In vivo footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2 promoter: evidence for cell-specific regulation by Sp1 and Sp3.

11beta-Hydroxysteroid dehydrogenase type 2 is selectively expressed in aldosterone target tissues, where it confers aldosterone selectivity for the mineralocorticoid receptor by inactivating 11beta-hydroxyglucocorticoids with a high affinity for the mineralocorticoid receptor. The present investigation aimed to elucidate the mechanisms accounting for the rigorous control of the HSD11B2 gene in ...

متن کامل

Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1.

OBJECTIVE Mineralocorticoids and glucocorticoids have been implicated in the pathogenesis of cardiac diseases; however, both in vivo and in vitro studies indicate that changes in the cellular milieu of either the cardiomyocyte and/or cells of the vasculature is required for corticosteroid signalling to be pathological. The aim of the current study was to directly address whether signalling path...

متن کامل

Characterization of human trophoblast as a mineralocorticoid target tissue.

In mineralocorticoid target tissues, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) confers mineralocorticoid receptor selectivity by metabolizing hormonally active cortisol to inactive cortisone, allowing aldosterone access to the receptor. This enzyme is also expressed in high abundance in fetal tissues, particularly in placental trophoblast, where a role has been proposed in regula...

متن کامل

Isolation and characterization of novel human short-chain dehydrogenase/reductase SCDR10B which is highly expressed in the brain and acts as hydroxysteroid dehydrogenase.

Hydroxysteroid dehydrogenase belongs to the subfamily of short-chain dehydrogenases/reductases (SDR), and 11-beta-hydroxysteroid dehydrogenase catalyzes the interconversion of inactive glucocorticoids (cortisone in human, dehydrocorticosterone in rodents) and active glucocorticoids (cortisol in human, corticosterone in rodents). We report here the cloning and characterization of a novel human S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 161 3  شماره 

صفحات  -

تاریخ انتشار 1999